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Abstract

It is shown that the oscillator €xþ ð1þ _x2Þx ¼ 0 is conservative and scaling laws for the period for small and large

amplitude vibrations are derived. Analytical approximations of the periodic orbits are also constructed and these show

excellent agreement with numerical solutions.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Beatty and Mickens [1] and later Mickens [2] investigated the nonlinear oscillator

€xþ ð1þ _x2Þx ¼ 0 (1)

subject to the initial conditions

xð0Þ ¼ A40 and _xð0Þ ¼ 0. (2)

This oscillator is characterized by a velocity-dependent stiffness coefficient and depends on only one
parameter. Mickens pointed out that while a periodic solution exists for all positive A and the period TðAÞ

approaches zero for large A [2], simple approximations for the period are only defined for a finite range of
initial amplitudes. For example, the first-order harmonic balance approximation gives the following
expression for the period:

TðAÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� A2

p
, (3)

which is valid only for jAjo2. Even more advanced techniques, such as the harmonic balance base averaging
of Chatterjee [3] give similar limitations. The properties of Eq. (1) significantly differ from those of the
oscillator

€xþ ð1þ _xÞx ¼ 0, (4)
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Fig. 1. The solution of Eqs. (1) and (2) is represented in terms of z ¼ x=A as a function of t. The oscillations look nearly harmonic for

A ¼ 1 (broken line) and square-wave-like for A ¼ 5 (full line).

T. Kalmár-Nagy, T. Erneux / Journal of Sound and Vibration 313 (2008) 806–811 807
which has been studied in the context of relaxation oscillations [4] and laser oscillations [5]. For Eq. (4) subject
to the initial conditions (2), the period of the oscillations increases monotonically with A and the output
consists of short and intense pulses separated by intervals where x is almost zero. This is not the case of
Eq. (1). As demonstrated in this note, the period of the oscillations for Eq. (1) decreases with A and the
oscillations are reminiscent of square waves for large A (see Fig. 1).

Our objective is to determine approximations for the small and large A limit of the solution of Eqs. (1) and
(2). Similar asymptotic representations of the period have recently been published in Ref. [6]. Here, it is first
shown that this oscillator is conservative and depends on a single-well potential. The period of oscillation is
then expressed in an integral form and the leading terms in its expansion for small and large A are determined.
Analytical constructions of small and large amplitude periodic solutions directly from Eq. (1) are also
provided.

2. Calculating the period

As the first step of the analysis, Eq. (1) will be nondimensionalized. The usefulness of this procedure is
discussed by Mickens [7]. The significance of the rescaling in this case is that parameter A will appear in the
differential equation rather than the initial conditions. This is utilized in our proof of conservativeness and in
the construction of the potential for the system.

With the scaled variable z ¼ x=A Eqs. (1) and (2) are rewritten as

€zþ ð1þ A2 _z2Þz ¼ 0 with zð0Þ ¼ 1; _zð0Þ ¼ 0, (5)

or equivalently, the following system of first-order differential equations:

dz

dt
¼ y;

dy

dt
¼ �ð1þ A2y2Þz, (6)

zð0Þ ¼ 1; yð0Þ ¼ 0. (7)

By dividing the two equations of Eq. (6) ðza0Þ, we obtain an equation for the trajectory y ¼ yðzÞ satisfying

dy

dz
¼ �
ð1þ A2y2Þz

y
; yð1Þ ¼ 0. (8)
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This equation is separable and admits the first integral

lnð1þ A2y2Þ þ A2z2 ¼ A2. (9)

From Eq. (9) 1þ A2y2 is expressed as

1þ A2y2 ¼ expðA2ð1� z2ÞÞ. (10)

Differentiating both sides and simplifying ðy ¼ _zÞ leads to the following second-order differential equation
for z:

€zþ eA2ð1�z2Þz ¼ 0. (11)

It is easy to show that this equation is equivalent to

€zþ
dV

dz
¼ 0, (12)

where V ðzÞ is a single-well potential defined by ðV ð1Þ ¼ 0Þ

V ðzÞ �
1� expðA2ð1� z2ÞÞ

2A2
. (13)

The existence of the potential V ðzÞ provides a simple proof of the conservativeness [8] of the equivalent
oscillators (11) and (1). Using Eq. (10), we write

y ¼ _z ¼ �A�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
expðA2ð1� z2ÞÞ � 1

q
. (14)

This allows to define the period as [2]

TðAÞ ¼ 4A

Z 1

0

dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
expðA2ð1� z2ÞÞ � 1

p . (15)

The small A limit is obtained by expanding the exponential in Eq. (15) for small A2. Integrating the first two
terms gives

TðAÞ ’ 2p�
A2p
4
¼ 2p 1�

A2

8

� �
. (16)

The large A limit is more delicate to compute, but the main contribution of the integral comes for z close to 1.
Introducing the new variable u defined by

z ¼ 1þ A�2u, (17)

Eq. (15) becomes

TðAÞ ¼
4

A

Z 0

�A2

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�2u�u2=A2

� 1
p . (18)

In the A!1 limit this integral has a closed form solution [9]

lim
A!1

Z 0

�A2

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�2u�u2=A2

� 1
p ¼

p
2
. (19)

Therefore the leading asymptotic behavior of the period for large A is

TðAÞ ’
2p
A

. (20)

Fig. 2 compares the exact numerical period with the two approximations by Eqs. (16) and (20).
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Fig. 2. The numerically computed period TðAÞ (full line) is compared to its small A and large A asymptotic approximations (broken lines)

given by Eqs. (16) and 20, respectively.
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3. Approximations of periodic orbits

The conservative nature of the oscillator Eq. (11) is now exploited to construct analytical approximations of
the periodic solutions for small and large A.

For A51

eA2ð1�z2Þ � 1þ A2 � A2z2 (21)

and thus Eq. (11) can be written as

€zþ ð1þ A2Þz� A2z3 ¼ 0. (22)

Closed form solutions of this equation can be found in terms of Jacobi elliptic functions [10]. Substituting a
solution of the form (a1 , a2 are nonzero)

zðtÞ ¼ a1 snðu;mÞ; u ¼ a2tþ b, (23)

into Eq. (22) yields

�1� A2 þ a2
2ðm cn2ðu;mÞ þ dn2ðu;mÞÞ þ A2a2

1 sn
2ðu;mÞ ¼ 0. (24)

Using the identities

sn2ðu;mÞ þ cn2ðu;mÞ ¼ 1, (25)

m sn2ðu;mÞ þ dn2ðu;mÞ ¼ 1 (26)

leads to

a2
2ð1þmÞ � 1� A2 þ ðA2a2

1 � 2a2
2mÞ sn

2ðu;mÞ ¼ 0. (27)

Equating the coefficients of this equation with zero provides two algebraic equations:

a2
2ð1þmÞ � 1� A2 ¼ 0, (28)

A2a2
1 � 2a2

2m ¼ 0. (29)



ARTICLE IN PRESS
T. Kalmár-Nagy, T. Erneux / Journal of Sound and Vibration 313 (2008) 806–811810
Two additional equations are provided by the initial conditions (5) and therefore the four unknowns a1, a2, m,
b can be solved for as

a1 ¼ 1,

a2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2=2

q
,

m ¼ A2=ð2þ A2Þ,

b ¼ sn�1ð1;mÞ. ð30Þ

Fig. 3 shows the periodic solution of Eq. (11) for A ¼ 0:5 and the corresponding approximation by Eqs. (23)
and (30).

The analysis of the period for large A indicates that the solution is mostly in the neighborhood the slow
manifolds near z ¼ �1 with the time scale t ¼ OðA�1Þ. This motivates the introduction of the new time s ¼ At

and z ¼ �1þ A�2u into Eq. (6). The A2y2 term in the equation for y also suggests the change of variable
y ¼ A�1v. For large A, the equation for y then reduces to

dv

ds
¼ �ð1þ v2Þ; vð0Þ ¼ 0. (31)

Eq. (31) admits the solution

v ¼ � tanðsÞ. (32)

This expression becomes unbounded as s!�p=2; where the fast jump transitions between z ¼ �1 occur.
As a consequence, the half-period in s is the time interval between two successive jumps and equals p.
Equivalently, the half-period in t equals p=A, as seen from Eq. (20). The following initial value problem for u is
then obtained from the first equation of Eq. (6)

du=ds ¼ v; uð0Þ ¼ 0. (33)

The solution is

u ¼ � ln j secðsÞj. (34)

For A ¼ 5, the approximation of the slow manifolds near z ¼ �1 are given by

z ¼ �1þ A�2 ln j secð2pt=T0Þj; T0=4oto3T0=4, (35)

z ¼ 1� A�2 ln j secð2pt=T0Þj; 3T0=4oto5T0=4, (36)

where T0 ¼ 2p=A ’ 1:3. Fig. 4 shows excellent agreement between the numerical solution and the
approximation.
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Fig. 3. The periodic solution of Eq. (11) for A ¼ 0:5 (full line) is compared with its asymptotic approximation (dots) given by Eqs. (23)

and (30).
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Fig. 4. The periodic solution of Eq. (11) for A ¼ 5 (full line) is compared with its asymptotic approximation (dots) given by Eqs. (35)

and (36).

T. Kalmár-Nagy, T. Erneux / Journal of Sound and Vibration 313 (2008) 806–811 811
4. Discussion

In summary, our analysis of Eqs. (1) and (2) demonstrated that these equations describe a conservative
oscillator. For small amplitude oscillations the period quadratically depends on the vibration amplitude, i.e.
TðAÞ ’ 2pð1� A2=8Þ. Further, a good analytical approximation of the motion is also given in terms of the
Jacobi elliptic function. For large A the period scales like A�1, and the oscillations are square-wave-like,
switching periodically between the slow manifolds x�� A. Numerical solutions for A ¼ 0:5 and A ¼ 5
compare quantitatively well with the analytical approximations.
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